Copied to
clipboard

G = C22×C30order 120 = 23·3·5

Abelian group of type [2,2,30]

direct product, abelian, monomial, 2-elementary

Aliases: C22×C30, SmallGroup(120,47)

Series: Derived Chief Lower central Upper central

C1 — C22×C30
C1C5C15C30C2×C30 — C22×C30
C1 — C22×C30
C1 — C22×C30

Generators and relations for C22×C30
 G = < a,b,c | a2=b2=c30=1, ab=ba, ac=ca, bc=cb >

Subgroups: 64, all normal (8 characteristic)
C1, C2, C3, C22, C5, C6, C23, C10, C2×C6, C15, C2×C10, C22×C6, C30, C22×C10, C2×C30, C22×C30
Quotients: C1, C2, C3, C22, C5, C6, C23, C10, C2×C6, C15, C2×C10, C22×C6, C30, C22×C10, C2×C30, C22×C30

Smallest permutation representation of C22×C30
Regular action on 120 points
Generators in S120
(1 81)(2 82)(3 83)(4 84)(5 85)(6 86)(7 87)(8 88)(9 89)(10 90)(11 61)(12 62)(13 63)(14 64)(15 65)(16 66)(17 67)(18 68)(19 69)(20 70)(21 71)(22 72)(23 73)(24 74)(25 75)(26 76)(27 77)(28 78)(29 79)(30 80)(31 96)(32 97)(33 98)(34 99)(35 100)(36 101)(37 102)(38 103)(39 104)(40 105)(41 106)(42 107)(43 108)(44 109)(45 110)(46 111)(47 112)(48 113)(49 114)(50 115)(51 116)(52 117)(53 118)(54 119)(55 120)(56 91)(57 92)(58 93)(59 94)(60 95)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 31)(7 32)(8 33)(9 34)(10 35)(11 36)(12 37)(13 38)(14 39)(15 40)(16 41)(17 42)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 49)(25 50)(26 51)(27 52)(28 53)(29 54)(30 55)(61 101)(62 102)(63 103)(64 104)(65 105)(66 106)(67 107)(68 108)(69 109)(70 110)(71 111)(72 112)(73 113)(74 114)(75 115)(76 116)(77 117)(78 118)(79 119)(80 120)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)

G:=sub<Sym(120)| (1,81)(2,82)(3,83)(4,84)(5,85)(6,86)(7,87)(8,88)(9,89)(10,90)(11,61)(12,62)(13,63)(14,64)(15,65)(16,66)(17,67)(18,68)(19,69)(20,70)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,96)(32,97)(33,98)(34,99)(35,100)(36,101)(37,102)(38,103)(39,104)(40,105)(41,106)(42,107)(43,108)(44,109)(45,110)(46,111)(47,112)(48,113)(49,114)(50,115)(51,116)(52,117)(53,118)(54,119)(55,120)(56,91)(57,92)(58,93)(59,94)(60,95), (1,56)(2,57)(3,58)(4,59)(5,60)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50)(26,51)(27,52)(28,53)(29,54)(30,55)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)>;

G:=Group( (1,81)(2,82)(3,83)(4,84)(5,85)(6,86)(7,87)(8,88)(9,89)(10,90)(11,61)(12,62)(13,63)(14,64)(15,65)(16,66)(17,67)(18,68)(19,69)(20,70)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,96)(32,97)(33,98)(34,99)(35,100)(36,101)(37,102)(38,103)(39,104)(40,105)(41,106)(42,107)(43,108)(44,109)(45,110)(46,111)(47,112)(48,113)(49,114)(50,115)(51,116)(52,117)(53,118)(54,119)(55,120)(56,91)(57,92)(58,93)(59,94)(60,95), (1,56)(2,57)(3,58)(4,59)(5,60)(6,31)(7,32)(8,33)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50)(26,51)(27,52)(28,53)(29,54)(30,55)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120) );

G=PermutationGroup([[(1,81),(2,82),(3,83),(4,84),(5,85),(6,86),(7,87),(8,88),(9,89),(10,90),(11,61),(12,62),(13,63),(14,64),(15,65),(16,66),(17,67),(18,68),(19,69),(20,70),(21,71),(22,72),(23,73),(24,74),(25,75),(26,76),(27,77),(28,78),(29,79),(30,80),(31,96),(32,97),(33,98),(34,99),(35,100),(36,101),(37,102),(38,103),(39,104),(40,105),(41,106),(42,107),(43,108),(44,109),(45,110),(46,111),(47,112),(48,113),(49,114),(50,115),(51,116),(52,117),(53,118),(54,119),(55,120),(56,91),(57,92),(58,93),(59,94),(60,95)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,31),(7,32),(8,33),(9,34),(10,35),(11,36),(12,37),(13,38),(14,39),(15,40),(16,41),(17,42),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,49),(25,50),(26,51),(27,52),(28,53),(29,54),(30,55),(61,101),(62,102),(63,103),(64,104),(65,105),(66,106),(67,107),(68,108),(69,109),(70,110),(71,111),(72,112),(73,113),(74,114),(75,115),(76,116),(77,117),(78,118),(79,119),(80,120),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)]])

C22×C30 is a maximal subgroup of   C30.38D4

120 conjugacy classes

class 1 2A···2G3A3B5A5B5C5D6A···6N10A···10AB15A···15H30A···30BD
order12···23355556···610···1015···1530···30
size11···11111111···11···11···11···1

120 irreducible representations

dim11111111
type++
imageC1C2C3C5C6C10C15C30
kernelC22×C30C2×C30C22×C10C22×C6C2×C10C2×C6C23C22
# reps17241428856

Matrix representation of C22×C30 in GL3(𝔽31) generated by

3000
010
001
,
3000
0300
001
,
3000
0260
0017
G:=sub<GL(3,GF(31))| [30,0,0,0,1,0,0,0,1],[30,0,0,0,30,0,0,0,1],[30,0,0,0,26,0,0,0,17] >;

C22×C30 in GAP, Magma, Sage, TeX

C_2^2\times C_{30}
% in TeX

G:=Group("C2^2xC30");
// GroupNames label

G:=SmallGroup(120,47);
// by ID

G=gap.SmallGroup(120,47);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-5]);
// Polycyclic

G:=Group<a,b,c|a^2=b^2=c^30=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations

׿
×
𝔽